(x^3-8x^2+19x-15)/(x-3)

5 min read Jun 17, 2024
(x^3-8x^2+19x-15)/(x-3)

Dividing Polynomials: (x^3 - 8x^2 + 19x - 15) / (x - 3)

This article will demonstrate how to divide the polynomial (x^3 - 8x^2 + 19x - 15) by the binomial (x - 3) using polynomial long division.

Polynomial Long Division

  1. Set up the division: Write the dividend (x^3 - 8x^2 + 19x - 15) inside the division symbol and the divisor (x - 3) outside.

         ___________
    x - 3 | x^3 - 8x^2 + 19x - 15 
    
  2. Divide the leading terms: Divide the leading term of the dividend (x^3) by the leading term of the divisor (x). This gives us x^2, which we write above the division symbol.

         x^2        
    x - 3 | x^3 - 8x^2 + 19x - 15 
    
  3. Multiply the divisor by the result: Multiply the divisor (x - 3) by the result we just obtained (x^2). This gives us x^3 - 3x^2. Write this product below the dividend, aligning the terms by their exponents.

         x^2        
    x - 3 | x^3 - 8x^2 + 19x - 15 
            x^3 - 3x^2
    
  4. Subtract: Subtract the product from the dividend. Remember to change the signs of the terms being subtracted.

         x^2        
    x - 3 | x^3 - 8x^2 + 19x - 15 
            x^3 - 3x^2
            ---------
                -5x^2 
    
  5. Bring down the next term: Bring down the next term of the dividend (+19x).

         x^2        
    x - 3 | x^3 - 8x^2 + 19x - 15 
            x^3 - 3x^2
            ---------
                -5x^2 + 19x 
    
  6. Repeat steps 2-5: Divide the new leading term (-5x^2) by the leading term of the divisor (x). This gives us -5x. Write this above the division symbol.

         x^2 - 5x    
    x - 3 | x^3 - 8x^2 + 19x - 15 
            x^3 - 3x^2
            ---------
                -5x^2 + 19x 
                -5x^2 + 15x
    
  7. Subtract: Subtract the product (-5x^2 + 15x) from the previous result.

         x^2 - 5x    
    x - 3 | x^3 - 8x^2 + 19x - 15 
            x^3 - 3x^2
            ---------
                -5x^2 + 19x 
                -5x^2 + 15x
                ---------
                       4x 
    
  8. Bring down the next term: Bring down the last term of the dividend (-15).

         x^2 - 5x    
    x - 3 | x^3 - 8x^2 + 19x - 15 
            x^3 - 3x^2
            ---------
                -5x^2 + 19x 
                -5x^2 + 15x
                ---------
                       4x - 15 
    
  9. Repeat steps 2-5: Divide the new leading term (4x) by the leading term of the divisor (x). This gives us +4. Write this above the division symbol.

         x^2 - 5x + 4
    x - 3 | x^3 - 8x^2 + 19x - 15 
            x^3 - 3x^2
            ---------
                -5x^2 + 19x 
                -5x^2 + 15x
                ---------
                       4x - 15 
                       4x - 12
    
  10. Subtract: Subtract the product (4x - 12) from the previous result.

     x^2 - 5x + 4
x - 3 | x^3 - 8x^2 + 19x - 15 
        x^3 - 3x^2
        ---------
            -5x^2 + 19x 
            -5x^2 + 15x
            ---------
                   4x - 15 
                   4x - 12
                   ---------
                        -3 

Result

The result of the division is: x^2 - 5x + 4 with a remainder of -3. This can also be expressed as:

(x^3 - 8x^2 + 19x - 15) / (x - 3) = x^2 - 5x + 4 - 3/(x-3)

This means that the polynomial (x^3 - 8x^2 + 19x - 15) is equal to (x - 3) multiplied by (x^2 - 5x + 4) minus 3.

Related Post


Featured Posts